Chandra Mouli Pavuluri received PhD in Chemistry from Sri Venkateswara University, Tirupati, India in 2005. He worked as Postdoctoral Researcher at abroad (Korea, USA and Japan), before joining the Institute of Surface-Earth System Science, Tianjin University as Full Professor in 2016. He has more than 15 years’ experience in atmospheric chemistry and isotope chemistry and authored 29 research papers in reputed research journals apart from a review article, two monographs and many conference contributions. His research has been cited in more than 800 publications with an h-index 16. He is a member of several scientific organizations, and serving as an Editorial Board Member for "Scientific Reports" and as frequent referee for many other journals.
Atmospheric aerosols are a complex mixture of inorganic and organic material that directly emitted into the atmosphere (primary) from natural and anthropogenic sources and formed in the atmosphere (secondary) from the gaseous species of both the origins. Aerosols affect the Earth’s climate system, air quality and human health and play an important role in atmospheric chemistry. The current understanding of regional and global climate changes is suffering from large uncertainties in estimation of aerosol budget and their impacts due to lack of quantitative understanding of their properties, origins and transformations. To improve the understanding of aerosol sources and properties and thus their interactions with climate system, his group focuses on atmospheric chemistry and isotope geochemistry with a special emphasis on physicochemical characteristics, origins and secondary formation and transformations of atmospheric aerosols. The specific topics of research include: (i) Field experiments on chemical components, organic molecular species, number size distributions and stable carbon (13C), nitrogen (15N) and radiocarbon (14C) isotope ratios of atmospheric aerosols and precipitation. (ii) Laboratory studies on production, transformation and degradation of secondary organic aerosols (SOA) and subsequent changes in their 13C and 15N isotopic compositions, and role of radicals and catalysts abundances on aerosol chemical processes in gaseous and aqueous phases under atmospherically relevant conditions.