研究中心

界面过程与土壤圈演化研究中心

近几年代表性成果:

1)       Chang, L., Yu, G.H. and Liu, C.Q., 2023a. Interfacial processes and mechanisms of synergistic degradation of dichlorobiphenyl by white rot fungi and magnetite nanoparticles. Science China-Earth Sciences, 66(9): 2057-2065.

2)       Chang, P., Zhu, X., Cai, H., Zhang, J., Li, S., Lu, X., Wang, R. and Teng, H.H., 2024. Ferric vs. ferrous arsenate amorphous precursors: properties and controls on scorodite mineralization. American Mineralogist.

3)       Chang, P., Zhu, X.Y., Xian, H.Y., Zhu, J.X., He, H.P. and Teng, H.H., 2023b. Kinetics, stoichiometry, and mechanism of arsenopyrite-water interaction under anoxic conditions. Geochimica Et Cosmochimica Acta, 363: 68-76.

4)       Chen, C.M., Dong, Y.J. and Thompson, A., 2023a. Electron transfer, atom exchange, and transformation of iron minerals in soils: The influence of soil organic matter. Environmental Science undefinedamp; Technology, 57(29): 10696-10707.

5)       Chen, C.M., Hall, S.J., Coward, E. and Thompson, A., 2020. Iron-mediated organic matter decomposition in humid soils can counteract protection. Nature Communications, 11(1).

6)       Chen, C.M. and Thompson, A., 2021. The influence of native soil organic matter and minerals on ferrous iron oxidation. Geochimica Et Cosmochimica Acta, 292: 254-270.

7)       Chen, Y.X., Zhang, J.C., Zhu, X.Y., Wang, Y.B., Chen, J.B., Sui, B. and Teng, H.Y., 2023b. Unraveling the complexities of Cd-aniline composite pollution: Insights from standalone and joint toxicity assessments in a bacterial community. Ecotoxicology and Environmental Safety, 265.

8)       Chi, Z.L. and Yu, G.H., 2021. Nanozyme-mediated elemental biogeochemical cycling and environmental effects. Science China-Earth Sciences, 64(7): 1015-1025.

9)       Chi, Z.L., Yu, G.H., Kappler, A., Liu, C.Q. and Gadd, G.M., 2022a. Fungal-mineral interactions modulating intrinsic peroxidase-like activity of iron nanoparticles: Implications for the biogeochemical cycles of nutrient elements and attenuation of contaminants. Environmental Science undefinedamp; Technology, 56(1): 672-680.

10)     Chi, Z.L., Yu, G.H., Teng, H.H., Liu, H.G., Wang, J., Liu, C.Q., Shen, Q.R. and Gadd, G.M., 2022b. Molecular trade-offs between lattice oxygen and oxygen vacancy drive organic pollutant degradation in fungal biomineralized exoskeletons. Environmental Science undefinedamp; Technology, 56(12): 8132-8141.

11)     Chi, Z.L., Zhao, X.Y., Chen, Y.L., Hao, J.L., Yu, G.H., Goodman, B.A. and Gadd, G.M., 2021. Intrinsic enzyme-like activity of magnetite particles is enhanced by cultivation with. Environmental Microbiology, 23(2): 893-907.

12)     Dong, Y.J., Wang, J.L., Ma, C., Thompson, A., Liu, C.Q. and Chen, C.M., 2024. The influence of seawater on Fe(II)-catalyzed ferrihydrite transformation and its subsequent consequences for C dynamics. Environmental Science undefinedamp; Technology, 58(43): 19277-19288.

13)     Guo, Y.-X., Yu, G.-H., Hu, S., Liang, C., Kappler, A., Jorgenson, Mark T., Guo, L. and Guggenberger, G., 2024. Deciphering the intricate control of minerals on deep soil carbon stability and persistence in Alaskan permafrost. Global Change Biology, 30(10): e17552.

14)     Jiang, C.C., Yu, G.H., Zhou, X.J., Sun, F.S. and Liu, C.Q., 2024. Biogeochemical process governing cadmium availability in sediments of typical coastal wetlands driven by drying-wetting alternation. Journal of Hazardous Materials, 480.

15)     Li, H., Yu, G.H., Hao, L.P., Qiu, Y.P. and Hu, S.J., 2023. Mycorrhizae enhance reactive minerals but reduce mineral-associated carbon. Global Change Biology, 29(20): 5941-5954.

16)     Li, X.Y., Li, S.Q., Jiang, Y.F., Yang, Q., Zhang, J.C., Kuzyakov, Y., Teng, H.H. and Guan, D.X., 2024. Multi-imaging platform for rhizosphere studies: Phosphorus and oxygen fluxes. Journal of Environmental Management, 351.

17)     Liu, Y.J., Chen, Y.X., Chen, J.B., Zhang, J.C. and Teng, H.Y., 2024. Combined toxicity of Cd and aniline to soil bacteria varying with exposure sequence. Environment International, 190.

18)     Ma, H., Wang, P.Y., Thompson, A., Xie, Q.R., Zhu, M.Q., Teng, H.H., Fu, P.Q., Liu, C.Q. and Chen, C.M., 2022. Secondary mineral formation and carbon dynamics during FeS oxidation in the presence of dissolved organic matter. Environmental Science undefinedamp; Technology.

19)     Ning, J.Y., Zhu, X.D., Liu, H.G. and Yu, G.H., 2021. Coupling thermophilic composting and vermicomposting processes to remove Cr from biogas residues and produce high value-added biofertilizers. Bioresource Technology, 329.

20)     Su, J., Teng, H., Wan, X., Zhang, J.C. and Liu, C.Q., 2023. Direct air capture of CO2 through carbonate alkalinity generated by phytoplankton nitrate assimilation. International Journal of Environmental Research and Public Health, 20(1).

21)     Sun, F.S., Ma, C., Yu, G.H., Kuzyakov, Y., Lang, Y.C., Fu, P.Q., Guo, L.J., Teng, H.H. and Liu, C.Q., 2023a. Organic carbon preservation in wetlands: Iron oxide protection vs. thermodynamic limitation. Water Research, 241.

22)     Sun, F.S., Wang, M.M., Zhao, X.Y., Huang, Q.Y., Liu, C.Q. and Yu, G.H., 2024. Synergistic binding mechanisms of co-contaminants in soil profiles: Influence of iron-bearing minerals and microbial communities. Environmental Pollution, 344.

23)     Sun, F.S., Yu, G.H., Han, X.X., Chi, Z.L., Lang, Y.C. and Liu, C.Q., 2023b. Risk assessment and binding mechanisms of potentially toxic metals in sediments from different water levels in a coastal wetland. Journal of Environmental Sciences, 129: 202-212.

24)     Sun, F.S., Yu, G.H., Ning, J.Y., Zhu, X.D., Goodman, B.A. and Wu, J., 2020a. Biological removal of cadmium from biogas residues during vermicomposting, and the effect of earthworm hydrolysates on Trichoderma guizhouense sporulation. Bioresource Technology, 312.

25)     Sun, F.S., Yu, G.H., Zhao, X.Y., Polizzotto, M.L., Shen, Y.J., Zhou, H.B., Zhang, X., Zhang, J.C. and He, X.S., 2020b. Mechanisms of potentially toxic metal removal from biogas residues via vermicomposting revealed by synchrotron radiation-based spectromicroscopies. Waste Management, 113: 80-87.

26)     Wan, D., Liu, F.F., Chen, J.B., Kappler, A., Kuzyakov, Y., Liu, C.Q. and Yu, G.H., 2022. Microbial community mediates hydroxyl radical production in soil slurries by iron redox transformation. Water Research, 220.

27)     Xu, L.-X., Wang, F., Yao, Y., Yao, M., Kuzyakov, Y., Yu, G.-H. and Liu, C.-Q., 2024. Key role of microbial necromass and iron minerals in retaining micronutrients and facilitating biological nitrogen fixation in paddy soils. Fundamental Research.

28)     Yu, G.H., Chen, C.M., He, X.H., Zhang, X.Z. and Li, L.N., 2020a. Unexpected bulk density and microstructures response to long-term pig manure application in a Ferralic Cambisol Soil: Implications for rebuilding a healthy soil. Soil undefinedamp; Tillage Research, 203.

29)     Yu, G.H., Chi, Z.L., Kappler, A., Sun, F.S., Liu, C.Q., Teng, H.H. and Gadd, G.M., 2020b. Fungal nanophase particles catalyze iron transformation for oxidative stress removal and iron acquisition. Current Biology, 30(15): 2943-+.

30)     Yu, G.H. and Kuzyakov, Y., 2021. Fenton chemistry and reactive oxygen species in soil: Abiotic mechanisms of biotic processes, controls and consequences for carbon and nutrient cycling. Earth-Science Reviews, 214.

31)     Yu, G.H., Kuzyakov, Y., Luo, Y., Goodman, B.A., Kappler, A., Liu, F.F. and Sun, F.S., 2021. Molybdenum bioavailability and asymbiotic nitrogen fixation in soils are raised by iron (oxyhydr)oxide-mediated free radical production. Environmental Science undefinedamp; Technology, 55(21): 14979-14989.

32)     Yu, G.H. and Liu, S., 2022. Visualizing mineral-associated organic matters in long-term fertilization treated soils by NanoSIMS and SR-FTIR. Frontiers in Soil Science, 2.

33)     Yu, G.H., Sun, F.S., Yang, L., He, X.H. and Polizzotto, M.L., 2020c. Influence of biodiversity aroxide: Implications for soil carbon stabilization and storage. Land Degradation undefinedamp; Development, 31(4): 463-472.

34)     Zhang, J.C., McKenna, A.M. and Zhu, M.Q., 2021a. Macromolecular characterization of compound selectivity for oxidation and oxidative alterations of dissolved organic matter by manganese oxide. Environmental Science undefinedamp; Technology, 55(11): 7741-7751.

35)     Zhang, J.C., Su, J., Ma, C., Hu, X.Y. and Teng, H.H., 2021b. Periphytic Microbial Response to Environmental Phosphate (P) Bioavailability and Its Relevance to P Management in Paddy Fields. Applied and Environmental Microbiology, 87(20).

36)     Zhu, X.Y., Chang, P., Zhang, J.C., Wang, Y.B., Li, S.L., Lu, X.C., Wang, R.C., Liu, C.Q. and Teng, H.H., 2022. Kinetics and energetics of pharmacolite mineralization via the classic crystallization pathway. Geochimica Et Cosmochimica Acta, 339: 70-79.


相关链接 天津大学 天津大学办公网 天津大学科技信息系统